Assessment of knowledge on quality management in the care service of the National Center of Genetics Medical

Authors

Keywords:

quality of health care, quality assurance system

Abstract

Introduction: The National Center of Medical Genetics outlines strategies to ensure the quality of services, which are provided to the entire national network of medical genetics and institutions of the Cuban health system.

Objective: Was to evaluate the knowledge of the internal clients of the care process, in the requirements of the ISO-NC 9001: 2008 standard, in the period from May 2012 to May 2018.

Methods: The knowledge evaluation about quality issues in the institution (before and after the quality management system implementation) was carried out through a questionnaire. To compare the results at the beginning and at the end of the study period, a propensity score matching was performed. The association between the intervention and the level of knowledge was evaluated by the Bayes factor. Statistical analysis was performed in R 4.0.2.

Results: In the initial diagnosis, 29,35 % of responses were obtained with an adequate level of basic knowledge of the quality management system. The main irregularities were identified and strategies as continuous training of healthcare service clients and newly admitted staff were applied. The evaluation of the results at the end of the period showed a higher percentage (84,27%) of positive responses with respect to the initial diagnosis.

Conclusions: The training strategies implemented allowed raising the level of knowledge of the personnel of the care process in the CNGM from an insufficient level to an adequate level, for which the acquisition of culture on these topics is in progress.

 

Downloads

Download data is not yet available.

Author Biography

Yindra Louro Provedo, Centro Nacional de Genética Médica

Ingeniera Química. Máster en Gestión de Calidad y Medioambiental, Investigador Agregado, Profesor Asistente. Departamento de Calidad, Centro Nacional de Genética Médica, La Habana, Cuba.

References

1. Marcheco B. Cuba’s National Medical Genetics Program. MEDICC Rev. 2009;11(1):11-3.

2. Louro Y, Camayd I, Concepción A, Tudela M. Aseguramiento de la calidad en laboratorios vinculados con la genética médica. Revista Cubana de Genética Comunitaria. 2018;12(3):e74.

3. Massip C, Ortiz R, Llantá M, Peña M, Infante I. La evaluación de la satisfacción en salud: un reto a la calidad. Revista Cubana de Salud Pública. 2008;34(4).

4. Louro Y, Tudela M, Camayd I, Concepción A, Suárez B, González M. Evaluación de la satisfacción de los clientes del servicio asistencial del Centro Nacional de Genética Médica. Rev Cubana Genet Comunit. 2016;10(2):34-8.

5. Chou A, Mulvihill J, Kaye C, Mann S, Williams M, Williamson L. Developing a genetic services assessment tool to inform quality improvement efforts in state genetic service delivery. Genetics in Medicine 2019;21:955-64.

6. Sistemas de Gestión de Calidad. Requisitos. NC-ISO 9001-2015. La Habana: Oficina Nacional de Normalización.

7. Sistemas de Gestión de Calidad. Requisitos. NC-ISO 9001-2008. La Habana: Oficina Nacional de Normalización.

8. Wang L, Wang Y, Lou Y, Li Y, X Z. The role of quality control circles in sustained improvement of medical quality. SpringerPlus. 2013;2(141).

9. Obregón M, Alonso B, Díaz V, Iglesias F, Rodríguez L, Fernández D, et al. Manual de Capacitación y desarrollo de los recursos humanos: Tomo II. Ministerio de Salud Pública.; 2008.

10. Guerra R, Meizoso M. Gestión de la calidad. Conceptos, modelos y herramientas. UH. Facultad de artes y letras ed. La Habana: Editorial UH.2012.

11. PNO RH.001 Procedimiento para la selección y aprobación del personal que aspira a ocupar una plaza en el Centro Nacional de Genética Médica. 2017. 3era Edic.

12. Ho D, Imai K, King G, Stuart E. “Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference” Political Analysis 2007;15(3):199-236.

13. Ho D, Imai K, King G, Stuart E. MatchIt: Nonparametric Preprocessing for Parametric Causal Inference. Journal of Statistical Software. 2011;42(8):1-28.

14. Morey R, Rouder J. BayesFactor: Computation of Bayes Factors for Common Designs. 2018;R package. Version 0.9.12-4.2. https://CRAN.R-project.org/package=BayesFactor.

15. Revelle W. psych: Procedures for Personality and Psychological. 2019;Research, Northwestern University, Evanston, Illinois, USA. Version = 1.9.12. https://CRAN.R-project.org/package=psych

16. Choirat C, Honaker J, Imai K, King G, Lau O. _Zelig: Everyone's Statistical Software_. 2018;Version 5.1.6. http://zeligproject.org/.

17. Imai K, King G, Lau O. Toward A Common Framework for Statistical Analysis and Development. Journal of Computational Graphics and Statistics. 2008;17(4):892-913.

18. Wickham H. ggplot2: Elegant Graphics for Data Analysis. 2016;Springer-Verlag New York. https://ggplot2.tidyverse.org.

19. Silva L. Cultura estadística e investigación científica en el campo de la salud: una mirada crítica. . Ediciones Díaz de Santos SA, editor. España: Madrid1997.

20. Sch¨onbrodt F, Wagenmakers E. Bayes factor design analysis: Planning for compelling evidence. Psychon Bull Rev 2018;25:128-42.

21. Ventura J. Otras formas de entender la d de Cohen. Evaluar. 2018;18(3):73-8.

22. Bacallao J. Enfoques modernos del sesgo y la causalidad en la investigación epidemiológica. Revista Cubana de Salud Pública 2012;38(5):686-701.

Published

2022-04-12

How to Cite

1.
Louro Provedo Y, Concepción Álvarez A, Camayd Viera I, Tudela Cano M, Fujishiro Vidal L. Assessment of knowledge on quality management in the care service of the National Center of Genetics Medical. revgencom [Internet]. 2022 Apr. 12 [cited 2025 Jul. 1];13(2). Available from: https://revgenetica.sld.cu/index.php/gen/article/view/118

Issue

Section

Artículos originales